Vision-Based Multiple Interacting Targets Tracking via On-Line Supervised Learning
نویسندگان
چکیده
Successful multi-target tracking requires locating the targets and labeling their identities. This mission becomes significantly more challenging when many targets frequently interact with each other (present partial or complete occlusions). This paper presents an on-line supervised learning based method for tracking multiple interacting targets. When the targets do not interact with each other, multiple independent trackers are employed for training a classifier for each target. When the targets are in close proximity or present occlusions, the learned classifiers are used to assist in tracking. The tracking and learning supplement each other in the proposed method, which not only deals with tough problems encountered in multi-target tracking, but also ensures the entire process to be completely on-line. Various evaluations have demonstrated that this method performs better than previous methods when the interactions occur, and can maintain the correct tracking under various complex tracking situations, including crossovers, collisions and occlusions.
منابع مشابه
Multiple Target Tracking in Wireless Sensor Networks Based on Sensor Grouping and Hybrid Iterative-Heuristic Optimization
A novel hybrid method for tracking multiple indistinguishable maneuvering targets using a wireless sensor network is introduced in this paper. The problem of tracking the location of targets is formulated as a Maximum Likelihood Estimation. We propose a hybrid optimization method, which consists of an iterative and a heuristic search method, for finding the location of targets simultaneously. T...
متن کاملPhD Thesis Semi-Supervised Ensemble Methods for Computer Vision
V isual object classification and tracking are two of the cardinal problems in computer vision. Both tasks are extremely complicated and far from being solved. Recent advances towards building better detection and tracking systems were mainly achieved by improved representations and applying better learning algorithms. For the learning, usually supervised algorithms are applied which demand lar...
متن کاملA Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...
متن کاملTracking multiple targets via Particle Based Belief Propagation
Tracking multiple visual targets involving occlusion and varying number problems is a challenging problem in computer vision. This paper presents a summary of recent works on multiple targets tracking (MTT) in video done by a research group of Institute of Artificial Intelligence and Robotics, XJTU. The summary is given in two parts. The first part presents their work on modelling interactions ...
متن کاملTracking multiple interacting targets in a camera network
In this paper we propose a framework for tracking multiple interacting targets in a wide-area camera network consisting of both overlapping and non-overlapping cameras. Our method is motivated from observations that both individuals and groups of targets interact with each other in natural scenes. We associate each raw target trajectory (i.e., a tracklet) with a group state, which indicates if ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008